model calibration 썸네일형 리스트형 라벨 스무딩(Label smoothing), When Does Label Smoothing Help? $ \newcommand{\infdiv}{D\infdivx} \newcommand{\comz}{\mathcal{Z}} \newcommand{\vec}{\boldsymbol} $ 딥 러닝의 신뢰도를 개선하기 위한 모델 보정(calibration) 기법 소개 최근 다양한 분야에서 각광 받는 딥 러닝은 성능 면에서 매우 우수한 결과를 보여주고 있지만, 실제 애플리케이션에서 사용하기에는 신뢰성 측면에서 부족한 면이 있습니다. 대표적인 예로, 의료 영상에서 딥 러닝 모델을 사용해 질병 여부를 판단할 때 신뢰성에 대한 고려가 없다면 모델의 출력 결과인 예측 확률과 실제로 정답을 맞힐 확률이 일치하지 않는 문제가 있습니다. 다른 말로, 일반적인 딥 러닝 모델은 실제로 정답을 맞출 확률보다 자신이 예측한 결과를 과잉 .. 더보기 이전 1 다음